找到一年中排名前n位的客户,然后在一年中的每个月存储这些客户的数量

Find the top n clients for a year then bucket those client's volume across each month the year

大家早安,

我想报告该年度的前 n 个客户,然后显示这些前 n 个客户中的每一个在一年中的表现。样本 df:

import pandas as pd

dfTest = [

      ('Client', ['A','A','A','A',

            'B','B','B','B',

            'C','C','C','C',

            'D','D','D','D']),

      ('Year_Month', ['2018-08', '2018-09', '2018-10','2018-11',

              '2018-08', '2018-09', '2018-10','2018-11',

              '2018-08', '2018-09', '2018-10', '2018-11',

              '2018-08', '2018-09', '2018-10', '2018-11']),

      ('Volume', [100, 200, 300,400,

            1, 2, 3,4,

            10, 20, 30,40,

            1000, 2000, 3000,4000]

      ),

      ('state', ['Done', 'Tied Done', 'Tied Done','Done',

           'Passed', 'Done', 'Passed', 'Done',

           'Rejected', 'Done', 'Passed', 'Done',

           'Done', 'Done', 'Done', 'Done']

      )

     ]

df = pd.DataFrame.from_items(dfTest)

print(df)



 Client Year_Month Volume   state

0    A  2018-08   100    Done

1    A  2018-09   200 Tied Done

2    A  2018-10   300 Tied Done

3    A  2018-11   400    Done

4    B  2018-08    1   Passed

5    B  2018-09    2    Done

6    B  2018-10    3   Passed

7    B  2018-11    4    Done

8    C  2018-08   10  Rejected

9    C  2018-09   20    Done

10   C  2018-10   30   Passed

11   C  2018-11   40    Done

12   D  2018-08  1000    Done

13   D  2018-09  2000    Done

14   D  2018-10  3000    Done

15   D  2018-11  4000    Doned = [

  ('Done_Volume', 'sum')

]

# first filter by substring and then aggregate of filtered df

mask = ((df['state'] == 'Done') | (df['state'] == 'Tied Done'))

df_Client_Done_Volume = df[mask].groupby(['Client'])['Volume'].agg(d)

print(df_Client_Done_Volume)



Client       

A       1000

B         6

C        60

D       10000



print(df_Client_Done_Volume.nlargest(2, 'Done_Volume'))



    Done_Volume

Client       

D       10000

A       1000
Client 2018-08 2018-09 2018-10 2018-11

A    100   200   300   400

D    1000  2000  3000  4000

def get_top_n_performer(df, n):

  df_done = df[df['state'].isin(['Done', 'Tied Done'])]

  aggs= {'Volume':['sum']}

  data = df_done.groupby('Client').agg(aggs)

  data = data.reset_index()

  data.columns = ['Client','Volume_sum']

  data = data.sort_values(by='Volume_sum', ascending=False) 

  return data.head(n)



ls= list(get_top_n_performer(df, 2).Client.values)



data = pd.pivot_table(df[df['Client'].isin(ls)], values='Volume', index=['Client'],

       columns=['Year_Month'])

data = data.reset_index()



print(data)
Year_Month Client 2018-08 2018-09 2018-10 2018-11

0        A   100   200   300   400

1        D   1000   2000   3000   4000
s=df.loc[df.state.isin(['Done','Tied Done'])].drop('state',1)

s=s.pivot(*s.columns)



s.loc[s.sum(1).nlargest(2).index]

Year_Month 2018-08 2018-09 2018-10 2018-11

Client                    

D      1000.0  2000.0  3000.0  4000.0

A       100.0  200.0  300.0  400.0

现在确定顶部,比如说两个(n);关于已完成交易的客户:

import pandas as pd

dfTest = [

      ('Client', ['A','A','A','A',

            'B','B','B','B',

            'C','C','C','C',

            'D','D','D','D']),

      ('Year_Month', ['2018-08', '2018-09', '2018-10','2018-11',

              '2018-08', '2018-09', '2018-10','2018-11',

              '2018-08', '2018-09', '2018-10', '2018-11',

              '2018-08', '2018-09', '2018-10', '2018-11']),

      ('Volume', [100, 200, 300,400,

            1, 2, 3,4,

            10, 20, 30,40,

            1000, 2000, 3000,4000]

      ),

      ('state', ['Done', 'Tied Done', 'Tied Done','Done',

           'Passed', 'Done', 'Passed', 'Done',

           'Rejected', 'Done', 'Passed', 'Done',

           'Done', 'Done', 'Done', 'Done']

      )

     ]

df = pd.DataFrame.from_items(dfTest)

print(df)



 Client Year_Month Volume   state

0    A  2018-08   100    Done

1    A  2018-09   200 Tied Done

2    A  2018-10   300 Tied Done

3    A  2018-11   400    Done

4    B  2018-08    1   Passed

5    B  2018-09    2    Done

6    B  2018-10    3   Passed

7    B  2018-11    4    Done

8    C  2018-08   10  Rejected

9    C  2018-09   20    Done

10   C  2018-10   30   Passed

11   C  2018-11   40    Done

12   D  2018-08  1000    Done

13   D  2018-09  2000    Done

14   D  2018-10  3000    Done

15   D  2018-11  4000    Doned = [

  ('Done_Volume', 'sum')

]

# first filter by substring and then aggregate of filtered df

mask = ((df['state'] == 'Done') | (df['state'] == 'Tied Done'))

df_Client_Done_Volume = df[mask].groupby(['Client'])['Volume'].agg(d)

print(df_Client_Done_Volume)



Client       

A       1000

B         6

C        60

D       10000



print(df_Client_Done_Volume.nlargest(2, 'Done_Volume'))



    Done_Volume

Client       

D       10000

A       1000
Client 2018-08 2018-09 2018-10 2018-11

A    100   200   300   400

D    1000  2000  3000  4000

def get_top_n_performer(df, n):

  df_done = df[df['state'].isin(['Done', 'Tied Done'])]

  aggs= {'Volume':['sum']}

  data = df_done.groupby('Client').agg(aggs)

  data = data.reset_index()

  data.columns = ['Client','Volume_sum']

  data = data.sort_values(by='Volume_sum', ascending=False) 

  return data.head(n)



ls= list(get_top_n_performer(df, 2).Client.values)



data = pd.pivot_table(df[df['Client'].isin(ls)], values='Volume', index=['Client'],

       columns=['Year_Month'])

data = data.reset_index()



print(data)
Year_Month Client 2018-08 2018-09 2018-10 2018-11

0        A   100   200   300   400

1        D   1000   2000   3000   4000
s=df.loc[df.state.isin(['Done','Tied Done'])].drop('state',1)

s=s.pivot(*s.columns)



s.loc[s.sum(1).nlargest(2).index]

Year_Month 2018-08 2018-09 2018-10 2018-11

Client                    

D      1000.0  2000.0  3000.0  4000.0

A       100.0  200.0  300.0  400.0

所以客户 A 和 D 是我表现最好的两 (n) 个。

我现在想将此列表或 df 反馈到原始数据中,以检索它们在 Year_Month 上升到顶部且客户列为 rows

的一年中的表现

import pandas as pd

dfTest = [

      ('Client', ['A','A','A','A',

            'B','B','B','B',

            'C','C','C','C',

            'D','D','D','D']),

      ('Year_Month', ['2018-08', '2018-09', '2018-10','2018-11',

              '2018-08', '2018-09', '2018-10','2018-11',

              '2018-08', '2018-09', '2018-10', '2018-11',

              '2018-08', '2018-09', '2018-10', '2018-11']),

      ('Volume', [100, 200, 300,400,

            1, 2, 3,4,

            10, 20, 30,40,

            1000, 2000, 3000,4000]

      ),

      ('state', ['Done', 'Tied Done', 'Tied Done','Done',

           'Passed', 'Done', 'Passed', 'Done',

           'Rejected', 'Done', 'Passed', 'Done',

           'Done', 'Done', 'Done', 'Done']

      )

     ]

df = pd.DataFrame.from_items(dfTest)

print(df)



 Client Year_Month Volume   state

0    A  2018-08   100    Done

1    A  2018-09   200 Tied Done

2    A  2018-10   300 Tied Done

3    A  2018-11   400    Done

4    B  2018-08    1   Passed

5    B  2018-09    2    Done

6    B  2018-10    3   Passed

7    B  2018-11    4    Done

8    C  2018-08   10  Rejected

9    C  2018-09   20    Done

10   C  2018-10   30   Passed

11   C  2018-11   40    Done

12   D  2018-08  1000    Done

13   D  2018-09  2000    Done

14   D  2018-10  3000    Done

15   D  2018-11  4000    Doned = [

  ('Done_Volume', 'sum')

]

# first filter by substring and then aggregate of filtered df

mask = ((df['state'] == 'Done') | (df['state'] == 'Tied Done'))

df_Client_Done_Volume = df[mask].groupby(['Client'])['Volume'].agg(d)

print(df_Client_Done_Volume)



Client       

A       1000

B         6

C        60

D       10000



print(df_Client_Done_Volume.nlargest(2, 'Done_Volume'))



    Done_Volume

Client       

D       10000

A       1000
Client 2018-08 2018-09 2018-10 2018-11

A    100   200   300   400

D    1000  2000  3000  4000

def get_top_n_performer(df, n):

  df_done = df[df['state'].isin(['Done', 'Tied Done'])]

  aggs= {'Volume':['sum']}

  data = df_done.groupby('Client').agg(aggs)

  data = data.reset_index()

  data.columns = ['Client','Volume_sum']

  data = data.sort_values(by='Volume_sum', ascending=False) 

  return data.head(n)



ls= list(get_top_n_performer(df, 2).Client.values)



data = pd.pivot_table(df[df['Client'].isin(ls)], values='Volume', index=['Client'],

       columns=['Year_Month'])

data = data.reset_index()



print(data)
Year_Month Client 2018-08 2018-09 2018-10 2018-11

0        A   100   200   300   400

1        D   1000   2000   3000   4000
s=df.loc[df.state.isin(['Done','Tied Done'])].drop('state',1)

s=s.pivot(*s.columns)



s.loc[s.sum(1).nlargest(2).index]

Year_Month 2018-08 2018-09 2018-10 2018-11

Client                    

D      1000.0  2000.0  3000.0  4000.0

A       100.0  200.0  300.0  400.0

你需要 pandas.pivot_table 方法

这是我的建议:

import pandas as pd

dfTest = [

      ('Client', ['A','A','A','A',

            'B','B','B','B',

            'C','C','C','C',

            'D','D','D','D']),

      ('Year_Month', ['2018-08', '2018-09', '2018-10','2018-11',

              '2018-08', '2018-09', '2018-10','2018-11',

              '2018-08', '2018-09', '2018-10', '2018-11',

              '2018-08', '2018-09', '2018-10', '2018-11']),

      ('Volume', [100, 200, 300,400,

            1, 2, 3,4,

            10, 20, 30,40,

            1000, 2000, 3000,4000]

      ),

      ('state', ['Done', 'Tied Done', 'Tied Done','Done',

           'Passed', 'Done', 'Passed', 'Done',

           'Rejected', 'Done', 'Passed', 'Done',

           'Done', 'Done', 'Done', 'Done']

      )

     ]

df = pd.DataFrame.from_items(dfTest)

print(df)



 Client Year_Month Volume   state

0    A  2018-08   100    Done

1    A  2018-09   200 Tied Done

2    A  2018-10   300 Tied Done

3    A  2018-11   400    Done

4    B  2018-08    1   Passed

5    B  2018-09    2    Done

6    B  2018-10    3   Passed

7    B  2018-11    4    Done

8    C  2018-08   10  Rejected

9    C  2018-09   20    Done

10   C  2018-10   30   Passed

11   C  2018-11   40    Done

12   D  2018-08  1000    Done

13   D  2018-09  2000    Done

14   D  2018-10  3000    Done

15   D  2018-11  4000    Doned = [

  ('Done_Volume', 'sum')

]

# first filter by substring and then aggregate of filtered df

mask = ((df['state'] == 'Done') | (df['state'] == 'Tied Done'))

df_Client_Done_Volume = df[mask].groupby(['Client'])['Volume'].agg(d)

print(df_Client_Done_Volume)



Client       

A       1000

B         6

C        60

D       10000



print(df_Client_Done_Volume.nlargest(2, 'Done_Volume'))



    Done_Volume

Client       

D       10000

A       1000
Client 2018-08 2018-09 2018-10 2018-11

A    100   200   300   400

D    1000  2000  3000  4000

def get_top_n_performer(df, n):

  df_done = df[df['state'].isin(['Done', 'Tied Done'])]

  aggs= {'Volume':['sum']}

  data = df_done.groupby('Client').agg(aggs)

  data = data.reset_index()

  data.columns = ['Client','Volume_sum']

  data = data.sort_values(by='Volume_sum', ascending=False) 

  return data.head(n)



ls= list(get_top_n_performer(df, 2).Client.values)



data = pd.pivot_table(df[df['Client'].isin(ls)], values='Volume', index=['Client'],

       columns=['Year_Month'])

data = data.reset_index()



print(data)
Year_Month Client 2018-08 2018-09 2018-10 2018-11

0        A   100   200   300   400

1        D   1000   2000   3000   4000
s=df.loc[df.state.isin(['Done','Tied Done'])].drop('state',1)

s=s.pivot(*s.columns)



s.loc[s.sum(1).nlargest(2).index]

Year_Month 2018-08 2018-09 2018-10 2018-11

Client                    

D      1000.0  2000.0  3000.0  4000.0

A       100.0  200.0  300.0  400.0

输出:

import pandas as pd

dfTest = [

      ('Client', ['A','A','A','A',

            'B','B','B','B',

            'C','C','C','C',

            'D','D','D','D']),

      ('Year_Month', ['2018-08', '2018-09', '2018-10','2018-11',

              '2018-08', '2018-09', '2018-10','2018-11',

              '2018-08', '2018-09', '2018-10', '2018-11',

              '2018-08', '2018-09', '2018-10', '2018-11']),

      ('Volume', [100, 200, 300,400,

            1, 2, 3,4,

            10, 20, 30,40,

            1000, 2000, 3000,4000]

      ),

      ('state', ['Done', 'Tied Done', 'Tied Done','Done',

           'Passed', 'Done', 'Passed', 'Done',

           'Rejected', 'Done', 'Passed', 'Done',

           'Done', 'Done', 'Done', 'Done']

      )

     ]

df = pd.DataFrame.from_items(dfTest)

print(df)



 Client Year_Month Volume   state

0    A  2018-08   100    Done

1    A  2018-09   200 Tied Done

2    A  2018-10   300 Tied Done

3    A  2018-11   400    Done

4    B  2018-08    1   Passed

5    B  2018-09    2    Done

6    B  2018-10    3   Passed

7    B  2018-11    4    Done

8    C  2018-08   10  Rejected

9    C  2018-09   20    Done

10   C  2018-10   30   Passed

11   C  2018-11   40    Done

12   D  2018-08  1000    Done

13   D  2018-09  2000    Done

14   D  2018-10  3000    Done

15   D  2018-11  4000    Doned = [

  ('Done_Volume', 'sum')

]

# first filter by substring and then aggregate of filtered df

mask = ((df['state'] == 'Done') | (df['state'] == 'Tied Done'))

df_Client_Done_Volume = df[mask].groupby(['Client'])['Volume'].agg(d)

print(df_Client_Done_Volume)



Client       

A       1000

B         6

C        60

D       10000



print(df_Client_Done_Volume.nlargest(2, 'Done_Volume'))



    Done_Volume

Client       

D       10000

A       1000
Client 2018-08 2018-09 2018-10 2018-11

A    100   200   300   400

D    1000  2000  3000  4000

def get_top_n_performer(df, n):

  df_done = df[df['state'].isin(['Done', 'Tied Done'])]

  aggs= {'Volume':['sum']}

  data = df_done.groupby('Client').agg(aggs)

  data = data.reset_index()

  data.columns = ['Client','Volume_sum']

  data = data.sort_values(by='Volume_sum', ascending=False) 

  return data.head(n)



ls= list(get_top_n_performer(df, 2).Client.values)



data = pd.pivot_table(df[df['Client'].isin(ls)], values='Volume', index=['Client'],

       columns=['Year_Month'])

data = data.reset_index()



print(data)
Year_Month Client 2018-08 2018-09 2018-10 2018-11

0        A   100   200   300   400

1        D   1000   2000   3000   4000
s=df.loc[df.state.isin(['Done','Tied Done'])].drop('state',1)

s=s.pivot(*s.columns)



s.loc[s.sum(1).nlargest(2).index]

Year_Month 2018-08 2018-09 2018-10 2018-11

Client                    

D      1000.0  2000.0  3000.0  4000.0

A       100.0  200.0  300.0  400.0

我希望这会有所帮助!


IIUC

import pandas as pd

dfTest = [

      ('Client', ['A','A','A','A',

            'B','B','B','B',

            'C','C','C','C',

            'D','D','D','D']),

      ('Year_Month', ['2018-08', '2018-09', '2018-10','2018-11',

              '2018-08', '2018-09', '2018-10','2018-11',

              '2018-08', '2018-09', '2018-10', '2018-11',

              '2018-08', '2018-09', '2018-10', '2018-11']),

      ('Volume', [100, 200, 300,400,

            1, 2, 3,4,

            10, 20, 30,40,

            1000, 2000, 3000,4000]

      ),

      ('state', ['Done', 'Tied Done', 'Tied Done','Done',

           'Passed', 'Done', 'Passed', 'Done',

           'Rejected', 'Done', 'Passed', 'Done',

           'Done', 'Done', 'Done', 'Done']

      )

     ]

df = pd.DataFrame.from_items(dfTest)

print(df)



 Client Year_Month Volume   state

0    A  2018-08   100    Done

1    A  2018-09   200 Tied Done

2    A  2018-10   300 Tied Done

3    A  2018-11   400    Done

4    B  2018-08    1   Passed

5    B  2018-09    2    Done

6    B  2018-10    3   Passed

7    B  2018-11    4    Done

8    C  2018-08   10  Rejected

9    C  2018-09   20    Done

10   C  2018-10   30   Passed

11   C  2018-11   40    Done

12   D  2018-08  1000    Done

13   D  2018-09  2000    Done

14   D  2018-10  3000    Done

15   D  2018-11  4000    Doned = [

  ('Done_Volume', 'sum')

]

# first filter by substring and then aggregate of filtered df

mask = ((df['state'] == 'Done') | (df['state'] == 'Tied Done'))

df_Client_Done_Volume = df[mask].groupby(['Client'])['Volume'].agg(d)

print(df_Client_Done_Volume)



Client       

A       1000

B         6

C        60

D       10000



print(df_Client_Done_Volume.nlargest(2, 'Done_Volume'))



    Done_Volume

Client       

D       10000

A       1000
Client 2018-08 2018-09 2018-10 2018-11

A    100   200   300   400

D    1000  2000  3000  4000

def get_top_n_performer(df, n):

  df_done = df[df['state'].isin(['Done', 'Tied Done'])]

  aggs= {'Volume':['sum']}

  data = df_done.groupby('Client').agg(aggs)

  data = data.reset_index()

  data.columns = ['Client','Volume_sum']

  data = data.sort_values(by='Volume_sum', ascending=False) 

  return data.head(n)



ls= list(get_top_n_performer(df, 2).Client.values)



data = pd.pivot_table(df[df['Client'].isin(ls)], values='Volume', index=['Client'],

       columns=['Year_Month'])

data = data.reset_index()



print(data)
Year_Month Client 2018-08 2018-09 2018-10 2018-11

0        A   100   200   300   400

1        D   1000   2000   3000   4000
s=df.loc[df.state.isin(['Done','Tied Done'])].drop('state',1)

s=s.pivot(*s.columns)



s.loc[s.sum(1).nlargest(2).index]

Year_Month 2018-08 2018-09 2018-10 2018-11

Client                    

D      1000.0  2000.0  3000.0  4000.0

A       100.0  200.0  300.0  400.0

相关推荐

  • Spring部署设置openshift

    Springdeploymentsettingsopenshift我有一个问题让我抓狂了三天。我根据OpenShift帐户上的教程部署了spring-eap6-quickstart代码。我已配置调试选项,并且已将Eclipse工作区与OpehShift服务器同步-服务器上的一切工作正常,但在Eclipse中出现无法消除的错误。我有这个错误:cvc-complex-type.2.4.a:Invali…
    2025-04-161
  • 检查Java中正则表达式中模式的第n次出现

    CheckfornthoccurrenceofpatterninregularexpressioninJava本问题已经有最佳答案,请猛点这里访问。我想使用Java正则表达式检查输入字符串中特定模式的第n次出现。你能建议怎么做吗?这应该可以工作:MatchResultfindNthOccurance(intn,Patternp,CharSequencesrc){Matcherm=p.matcher…
    2025-04-161
  • 如何让 JTable 停留在已编辑的单元格上

    HowtohaveJTablestayingontheeditedcell如果有人编辑JTable的单元格内容并按Enter,则内容会被修改并且表格选择会移动到下一行。是否可以禁止JTable在单元格编辑后转到下一行?原因是我的程序使用ListSelectionListener在单元格选择上同步了其他一些小部件,并且我不想在编辑当前单元格后选择下一行。Enter的默认绑定是名为selectNext…
    2025-04-161
  • Weblogic 12c 部署

    Weblogic12cdeploy我正在尝试将我的应用程序从Tomcat迁移到Weblogic12.2.1.3.0。我能够毫无错误地部署应用程序,但我遇到了与持久性提供程序相关的运行时错误。这是堆栈跟踪:javax.validation.ValidationException:CalltoTraversableResolver.isReachable()threwanexceptionatorg.…
    2025-04-161
  • Resteasy Content-Type 默认值

    ResteasyContent-Typedefaults我正在使用Resteasy编写一个可以返回JSON和XML的应用程序,但可以选择默认为XML。这是我的方法:@GET@Path("/content")@Produces({MediaType.APPLICATION_XML,MediaType.APPLICATION_JSON})publicStringcontentListRequestXm…
    2025-04-161
  • 代码不会停止运行,在 Java 中

    thecodedoesn'tstoprunning,inJava我正在用Java解决项目Euler中的问题10,即"Thesumoftheprimesbelow10is2+3+5+7=17.Findthesumofalltheprimesbelowtwomillion."我的代码是packageprojecteuler_1;importjava.math.BigInteger;importjava…
    2025-04-161
  • Out of memory java heap space

    Outofmemoryjavaheapspace我正在尝试将大量文件从服务器发送到多个客户端。当我尝试发送大小为700mb的文件时,它显示了"OutOfMemoryjavaheapspace"错误。我正在使用Netbeans7.1.2版本。我还在属性中尝试了VMoption。但仍然发生同样的错误。我认为阅读整个文件存在一些问题。下面的代码最多可用于300mb。请给我一些建议。提前致谢publicc…
    2025-04-161
  • Log4j 记录到共享日志文件

    Log4jLoggingtoaSharedLogFile有没有办法将log4j日志记录事件写入也被其他应用程序写入的日志文件。其他应用程序可以是非Java应用程序。有什么缺点?锁定问题?格式化?Log4j有一个SocketAppender,它将向服务发送事件,您可以自己实现或使用与Log4j捆绑的简单实现。它还支持syslogd和Windows事件日志,这对于尝试将日志输出与来自非Java应用程序…
    2025-04-161