索引值的热图样式可视化

Heat map style visualize of index values

我想用一个色标来可视化/绘制数据,代表 GIC.Fish 和 GIC 中的值。按 Dive.Number 缩放列。这有点像相关矩阵或热图,除了 Fish 和 Zoop 值彼此不相关,而是与潜水次数相关。以下数据是数据帧"temp"。

Dive.Number GIC.Fish GIC.Zoop

[1,]      1   0.83   0.37

[2,]      2   0.88   0.41

[3,]      3   0.98   0.57

[4,]      4   0.90   0.43

[5,]      5   1.00   0.58

[6,]      6   0.92   0.44

[7,]      7   0.71   0.33

[8,]      8   0.99   0.55

[9,]      9   0.94   0.47

[10,]     10   0.95   0.48

[11,]     11   0.91   0.44

[12,]     12   0.96   0.50

[13,]     13   0.86   0.39

[14,]     14   0.94   0.47

[15,]     15   0.91   0.43

[16,]     16   0.89   0.41

[17,]     17   0.92   0.45

[18,]     18   0.94   0.47

[19,]     19   1.00   0.59

[20,]     20   0.96   0.53

[21,]     21   0.96   0.52

[22,]     22   1.00   0.68

[23,]     23   0.99   0.73

[24,]     24   0.98   0.77

[25,]     25   0.96   0.80

[26,]     26   0.83   0.98

[27,]     27   0.72   1.00

[28,]     28   0.98   0.77

[29,]     29   0.44   0.73

[30,]     30   0.29   0.44

[31,]     31   0.31   0.48

[32,]     32   0.64   0.97

[33,]     33   0.08   0.04

[34,]     34   0.09   0.05

[35,]     35   0.61   0.96

[36,]     36   0.36   0.59  p<-ggplot(temp, aes(x=GIC.Fish, y=Dive.Number, fill=GIC.Fish))+

  geom_tile() +

  scale_fill_gradient2(midpoint=.5, low="blue", high="red") +

  guides(fill=FALSE)setInternet2(TRUE)

con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))

  source(con)

close(con)

as.matrix(temp)

plot.table(temp, highlight=TRUE, colorbar=TRUE)dat$Dive.Number <- factor(dat$Dive.Number)

library(reshape2)

dat.m <- melt(dat, variable.name ="GIC.type", value.name ="GIC")



p <- ggplot(dat.m, aes(GIC, Dive.Number)) + geom_point(aes(colour = GIC)) +

 scale_colour_gradient(low ="blue", high ="red") +

 facet_wrap(~GIC.type)

pp <- ggplot(dat.m, aes(GIC.type, Dive.Number)) + geom_tile(aes(fill = GIC)) +

 scale_fill_gradient(low ="blue", high ="red")plot(GIC.Fish ~ GIC.Zoop, data=dat, ylim=c(0,1.1) )

with(dat, lines(GIC.Fish ~ GIC.Zoop) )

with(dat, text(GIC.Zoop, GIC.Fish+.05, labels=Dive.Number , 

     col= colorRampPalette( c("#FFFFD4","#FED98E","#FE9929", 

      "#D95F0E","#993404"), space ="Lab")(36)[Dive.Number]) )c("#00FFD4","#00D98E","#880088","#D900ff","#993404")

这段代码让我有点接近,但只有一列相关数据。

Dive.Number GIC.Fish GIC.Zoop

[1,]      1   0.83   0.37

[2,]      2   0.88   0.41

[3,]      3   0.98   0.57

[4,]      4   0.90   0.43

[5,]      5   1.00   0.58

[6,]      6   0.92   0.44

[7,]      7   0.71   0.33

[8,]      8   0.99   0.55

[9,]      9   0.94   0.47

[10,]     10   0.95   0.48

[11,]     11   0.91   0.44

[12,]     12   0.96   0.50

[13,]     13   0.86   0.39

[14,]     14   0.94   0.47

[15,]     15   0.91   0.43

[16,]     16   0.89   0.41

[17,]     17   0.92   0.45

[18,]     18   0.94   0.47

[19,]     19   1.00   0.59

[20,]     20   0.96   0.53

[21,]     21   0.96   0.52

[22,]     22   1.00   0.68

[23,]     23   0.99   0.73

[24,]     24   0.98   0.77

[25,]     25   0.96   0.80

[26,]     26   0.83   0.98

[27,]     27   0.72   1.00

[28,]     28   0.98   0.77

[29,]     29   0.44   0.73

[30,]     30   0.29   0.44

[31,]     31   0.31   0.48

[32,]     32   0.64   0.97

[33,]     33   0.08   0.04

[34,]     34   0.09   0.05

[35,]     35   0.61   0.96

[36,]     36   0.36   0.59  p<-ggplot(temp, aes(x=GIC.Fish, y=Dive.Number, fill=GIC.Fish))+

  geom_tile() +

  scale_fill_gradient2(midpoint=.5, low="blue", high="red") +

  guides(fill=FALSE)setInternet2(TRUE)

con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))

  source(con)

close(con)

as.matrix(temp)

plot.table(temp, highlight=TRUE, colorbar=TRUE)dat$Dive.Number <- factor(dat$Dive.Number)

library(reshape2)

dat.m <- melt(dat, variable.name ="GIC.type", value.name ="GIC")



p <- ggplot(dat.m, aes(GIC, Dive.Number)) + geom_point(aes(colour = GIC)) +

 scale_colour_gradient(low ="blue", high ="red") +

 facet_wrap(~GIC.type)

pp <- ggplot(dat.m, aes(GIC.type, Dive.Number)) + geom_tile(aes(fill = GIC)) +

 scale_fill_gradient(low ="blue", high ="red")plot(GIC.Fish ~ GIC.Zoop, data=dat, ylim=c(0,1.1) )

with(dat, lines(GIC.Fish ~ GIC.Zoop) )

with(dat, text(GIC.Zoop, GIC.Fish+.05, labels=Dive.Number , 

     col= colorRampPalette( c("#FFFFD4","#FED98E","#FE9929", 

      "#D95F0E","#993404"), space ="Lab")(36)[Dive.Number]) )c("#00FFD4","#00D98E","#880088","#D900ff","#993404")

这让我更接近了,但我不想要 Dive Number 列,也不想在单元格中显示实际值,我希望能够更改颜色栏中的颜色。

Dive.Number GIC.Fish GIC.Zoop

[1,]      1   0.83   0.37

[2,]      2   0.88   0.41

[3,]      3   0.98   0.57

[4,]      4   0.90   0.43

[5,]      5   1.00   0.58

[6,]      6   0.92   0.44

[7,]      7   0.71   0.33

[8,]      8   0.99   0.55

[9,]      9   0.94   0.47

[10,]     10   0.95   0.48

[11,]     11   0.91   0.44

[12,]     12   0.96   0.50

[13,]     13   0.86   0.39

[14,]     14   0.94   0.47

[15,]     15   0.91   0.43

[16,]     16   0.89   0.41

[17,]     17   0.92   0.45

[18,]     18   0.94   0.47

[19,]     19   1.00   0.59

[20,]     20   0.96   0.53

[21,]     21   0.96   0.52

[22,]     22   1.00   0.68

[23,]     23   0.99   0.73

[24,]     24   0.98   0.77

[25,]     25   0.96   0.80

[26,]     26   0.83   0.98

[27,]     27   0.72   1.00

[28,]     28   0.98   0.77

[29,]     29   0.44   0.73

[30,]     30   0.29   0.44

[31,]     31   0.31   0.48

[32,]     32   0.64   0.97

[33,]     33   0.08   0.04

[34,]     34   0.09   0.05

[35,]     35   0.61   0.96

[36,]     36   0.36   0.59  p<-ggplot(temp, aes(x=GIC.Fish, y=Dive.Number, fill=GIC.Fish))+

  geom_tile() +

  scale_fill_gradient2(midpoint=.5, low="blue", high="red") +

  guides(fill=FALSE)setInternet2(TRUE)

con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))

  source(con)

close(con)

as.matrix(temp)

plot.table(temp, highlight=TRUE, colorbar=TRUE)dat$Dive.Number <- factor(dat$Dive.Number)

library(reshape2)

dat.m <- melt(dat, variable.name ="GIC.type", value.name ="GIC")



p <- ggplot(dat.m, aes(GIC, Dive.Number)) + geom_point(aes(colour = GIC)) +

 scale_colour_gradient(low ="blue", high ="red") +

 facet_wrap(~GIC.type)

pp <- ggplot(dat.m, aes(GIC.type, Dive.Number)) + geom_tile(aes(fill = GIC)) +

 scale_fill_gradient(low ="blue", high ="red")plot(GIC.Fish ~ GIC.Zoop, data=dat, ylim=c(0,1.1) )

with(dat, lines(GIC.Fish ~ GIC.Zoop) )

with(dat, text(GIC.Zoop, GIC.Fish+.05, labels=Dive.Number , 

     col= colorRampPalette( c("#FFFFD4","#FED98E","#FE9929", 

      "#D95F0E","#993404"), space ="Lab")(36)[Dive.Number]) )c("#00FFD4","#00D98E","#880088","#D900ff","#993404")

这是你所追求的吗?假设您的数据是 dat:

Dive.Number GIC.Fish GIC.Zoop

[1,]      1   0.83   0.37

[2,]      2   0.88   0.41

[3,]      3   0.98   0.57

[4,]      4   0.90   0.43

[5,]      5   1.00   0.58

[6,]      6   0.92   0.44

[7,]      7   0.71   0.33

[8,]      8   0.99   0.55

[9,]      9   0.94   0.47

[10,]     10   0.95   0.48

[11,]     11   0.91   0.44

[12,]     12   0.96   0.50

[13,]     13   0.86   0.39

[14,]     14   0.94   0.47

[15,]     15   0.91   0.43

[16,]     16   0.89   0.41

[17,]     17   0.92   0.45

[18,]     18   0.94   0.47

[19,]     19   1.00   0.59

[20,]     20   0.96   0.53

[21,]     21   0.96   0.52

[22,]     22   1.00   0.68

[23,]     23   0.99   0.73

[24,]     24   0.98   0.77

[25,]     25   0.96   0.80

[26,]     26   0.83   0.98

[27,]     27   0.72   1.00

[28,]     28   0.98   0.77

[29,]     29   0.44   0.73

[30,]     30   0.29   0.44

[31,]     31   0.31   0.48

[32,]     32   0.64   0.97

[33,]     33   0.08   0.04

[34,]     34   0.09   0.05

[35,]     35   0.61   0.96

[36,]     36   0.36   0.59  p<-ggplot(temp, aes(x=GIC.Fish, y=Dive.Number, fill=GIC.Fish))+

  geom_tile() +

  scale_fill_gradient2(midpoint=.5, low="blue", high="red") +

  guides(fill=FALSE)setInternet2(TRUE)

con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))

  source(con)

close(con)

as.matrix(temp)

plot.table(temp, highlight=TRUE, colorbar=TRUE)dat$Dive.Number <- factor(dat$Dive.Number)

library(reshape2)

dat.m <- melt(dat, variable.name ="GIC.type", value.name ="GIC")



p <- ggplot(dat.m, aes(GIC, Dive.Number)) + geom_point(aes(colour = GIC)) +

 scale_colour_gradient(low ="blue", high ="red") +

 facet_wrap(~GIC.type)

pp <- ggplot(dat.m, aes(GIC.type, Dive.Number)) + geom_tile(aes(fill = GIC)) +

 scale_fill_gradient(low ="blue", high ="red")plot(GIC.Fish ~ GIC.Zoop, data=dat, ylim=c(0,1.1) )

with(dat, lines(GIC.Fish ~ GIC.Zoop) )

with(dat, text(GIC.Zoop, GIC.Fish+.05, labels=Dive.Number , 

     col= colorRampPalette( c("#FFFFD4","#FED98E","#FE9929", 

      "#D95F0E","#993404"), space ="Lab")(36)[Dive.Number]) )c("#00FFD4","#00D98E","#880088","#D900ff","#993404")

关于 r:索引值的热图样式可视化

编辑

根据您的评论,也许这更像您的想象:

Dive.Number GIC.Fish GIC.Zoop

[1,]      1   0.83   0.37

[2,]      2   0.88   0.41

[3,]      3   0.98   0.57

[4,]      4   0.90   0.43

[5,]      5   1.00   0.58

[6,]      6   0.92   0.44

[7,]      7   0.71   0.33

[8,]      8   0.99   0.55

[9,]      9   0.94   0.47

[10,]     10   0.95   0.48

[11,]     11   0.91   0.44

[12,]     12   0.96   0.50

[13,]     13   0.86   0.39

[14,]     14   0.94   0.47

[15,]     15   0.91   0.43

[16,]     16   0.89   0.41

[17,]     17   0.92   0.45

[18,]     18   0.94   0.47

[19,]     19   1.00   0.59

[20,]     20   0.96   0.53

[21,]     21   0.96   0.52

[22,]     22   1.00   0.68

[23,]     23   0.99   0.73

[24,]     24   0.98   0.77

[25,]     25   0.96   0.80

[26,]     26   0.83   0.98

[27,]     27   0.72   1.00

[28,]     28   0.98   0.77

[29,]     29   0.44   0.73

[30,]     30   0.29   0.44

[31,]     31   0.31   0.48

[32,]     32   0.64   0.97

[33,]     33   0.08   0.04

[34,]     34   0.09   0.05

[35,]     35   0.61   0.96

[36,]     36   0.36   0.59  p<-ggplot(temp, aes(x=GIC.Fish, y=Dive.Number, fill=GIC.Fish))+

  geom_tile() +

  scale_fill_gradient2(midpoint=.5, low="blue", high="red") +

  guides(fill=FALSE)setInternet2(TRUE)

con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))

  source(con)

close(con)

as.matrix(temp)

plot.table(temp, highlight=TRUE, colorbar=TRUE)dat$Dive.Number <- factor(dat$Dive.Number)

library(reshape2)

dat.m <- melt(dat, variable.name ="GIC.type", value.name ="GIC")



p <- ggplot(dat.m, aes(GIC, Dive.Number)) + geom_point(aes(colour = GIC)) +

 scale_colour_gradient(low ="blue", high ="red") +

 facet_wrap(~GIC.type)

pp <- ggplot(dat.m, aes(GIC.type, Dive.Number)) + geom_tile(aes(fill = GIC)) +

 scale_fill_gradient(low ="blue", high ="red")plot(GIC.Fish ~ GIC.Zoop, data=dat, ylim=c(0,1.1) )

with(dat, lines(GIC.Fish ~ GIC.Zoop) )

with(dat, text(GIC.Zoop, GIC.Fish+.05, labels=Dive.Number , 

     col= colorRampPalette( c("#FFFFD4","#FED98E","#FE9929", 

      "#D95F0E","#993404"), space ="Lab")(36)[Dive.Number]) )c("#00FFD4","#00D98E","#880088","#D900ff","#993404")

关于 r:索引值的热图样式可视化


(警告。不是 ggplot2 创作。我从来没有学会用那个模型思考。)我想你可能正在寻找一个可以用颜色编码的二维密度地图,所以我绘制了 GIC.Zoop 和 GIC.Fish。从该结果生成密度图的概念似乎不符合数据的模式,因此我画了线以查看是否存在明显的序列。然后我用 Dive.Number 标记点,用颜色编码:

Dive.Number GIC.Fish GIC.Zoop

[1,]      1   0.83   0.37

[2,]      2   0.88   0.41

[3,]      3   0.98   0.57

[4,]      4   0.90   0.43

[5,]      5   1.00   0.58

[6,]      6   0.92   0.44

[7,]      7   0.71   0.33

[8,]      8   0.99   0.55

[9,]      9   0.94   0.47

[10,]     10   0.95   0.48

[11,]     11   0.91   0.44

[12,]     12   0.96   0.50

[13,]     13   0.86   0.39

[14,]     14   0.94   0.47

[15,]     15   0.91   0.43

[16,]     16   0.89   0.41

[17,]     17   0.92   0.45

[18,]     18   0.94   0.47

[19,]     19   1.00   0.59

[20,]     20   0.96   0.53

[21,]     21   0.96   0.52

[22,]     22   1.00   0.68

[23,]     23   0.99   0.73

[24,]     24   0.98   0.77

[25,]     25   0.96   0.80

[26,]     26   0.83   0.98

[27,]     27   0.72   1.00

[28,]     28   0.98   0.77

[29,]     29   0.44   0.73

[30,]     30   0.29   0.44

[31,]     31   0.31   0.48

[32,]     32   0.64   0.97

[33,]     33   0.08   0.04

[34,]     34   0.09   0.05

[35,]     35   0.61   0.96

[36,]     36   0.36   0.59  p<-ggplot(temp, aes(x=GIC.Fish, y=Dive.Number, fill=GIC.Fish))+

  geom_tile() +

  scale_fill_gradient2(midpoint=.5, low="blue", high="red") +

  guides(fill=FALSE)setInternet2(TRUE)

con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))

  source(con)

close(con)

as.matrix(temp)

plot.table(temp, highlight=TRUE, colorbar=TRUE)dat$Dive.Number <- factor(dat$Dive.Number)

library(reshape2)

dat.m <- melt(dat, variable.name ="GIC.type", value.name ="GIC")



p <- ggplot(dat.m, aes(GIC, Dive.Number)) + geom_point(aes(colour = GIC)) +

 scale_colour_gradient(low ="blue", high ="red") +

 facet_wrap(~GIC.type)

pp <- ggplot(dat.m, aes(GIC.type, Dive.Number)) + geom_tile(aes(fill = GIC)) +

 scale_fill_gradient(low ="blue", high ="red")plot(GIC.Fish ~ GIC.Zoop, data=dat, ylim=c(0,1.1) )

with(dat, lines(GIC.Fish ~ GIC.Zoop) )

with(dat, text(GIC.Zoop, GIC.Fish+.05, labels=Dive.Number , 

     col= colorRampPalette( c("#FFFFD4","#FED98E","#FE9929", 

      "#D95F0E","#993404"), space ="Lab")(36)[Dive.Number]) )c("#00FFD4","#00D98E","#880088","#D900ff","#993404")

关于 r:索引值的热图样式可视化

您可以尝试颜色过渡。此颜色矢量提供更多对比度:

Dive.Number GIC.Fish GIC.Zoop

[1,]      1   0.83   0.37

[2,]      2   0.88   0.41

[3,]      3   0.98   0.57

[4,]      4   0.90   0.43

[5,]      5   1.00   0.58

[6,]      6   0.92   0.44

[7,]      7   0.71   0.33

[8,]      8   0.99   0.55

[9,]      9   0.94   0.47

[10,]     10   0.95   0.48

[11,]     11   0.91   0.44

[12,]     12   0.96   0.50

[13,]     13   0.86   0.39

[14,]     14   0.94   0.47

[15,]     15   0.91   0.43

[16,]     16   0.89   0.41

[17,]     17   0.92   0.45

[18,]     18   0.94   0.47

[19,]     19   1.00   0.59

[20,]     20   0.96   0.53

[21,]     21   0.96   0.52

[22,]     22   1.00   0.68

[23,]     23   0.99   0.73

[24,]     24   0.98   0.77

[25,]     25   0.96   0.80

[26,]     26   0.83   0.98

[27,]     27   0.72   1.00

[28,]     28   0.98   0.77

[29,]     29   0.44   0.73

[30,]     30   0.29   0.44

[31,]     31   0.31   0.48

[32,]     32   0.64   0.97

[33,]     33   0.08   0.04

[34,]     34   0.09   0.05

[35,]     35   0.61   0.96

[36,]     36   0.36   0.59  p<-ggplot(temp, aes(x=GIC.Fish, y=Dive.Number, fill=GIC.Fish))+

  geom_tile() +

  scale_fill_gradient2(midpoint=.5, low="blue", high="red") +

  guides(fill=FALSE)setInternet2(TRUE)

con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))

  source(con)

close(con)

as.matrix(temp)

plot.table(temp, highlight=TRUE, colorbar=TRUE)dat$Dive.Number <- factor(dat$Dive.Number)

library(reshape2)

dat.m <- melt(dat, variable.name ="GIC.type", value.name ="GIC")



p <- ggplot(dat.m, aes(GIC, Dive.Number)) + geom_point(aes(colour = GIC)) +

 scale_colour_gradient(low ="blue", high ="red") +

 facet_wrap(~GIC.type)

pp <- ggplot(dat.m, aes(GIC.type, Dive.Number)) + geom_tile(aes(fill = GIC)) +

 scale_fill_gradient(low ="blue", high ="red")plot(GIC.Fish ~ GIC.Zoop, data=dat, ylim=c(0,1.1) )

with(dat, lines(GIC.Fish ~ GIC.Zoop) )

with(dat, text(GIC.Zoop, GIC.Fish+.05, labels=Dive.Number , 

     col= colorRampPalette( c("#FFFFD4","#FED98E","#FE9929", 

      "#D95F0E","#993404"), space ="Lab")(36)[Dive.Number]) )c("#00FFD4","#00D98E","#880088","#D900ff","#993404")

相关推荐

  • Spring部署设置openshift

    Springdeploymentsettingsopenshift我有一个问题让我抓狂了三天。我根据OpenShift帐户上的教程部署了spring-eap6-quickstart代码。我已配置调试选项,并且已将Eclipse工作区与OpehShift服务器同步-服务器上的一切工作正常,但在Eclipse中出现无法消除的错误。我有这个错误:cvc-complex-type.2.4.a:Invali…
    2025-04-161
  • 检查Java中正则表达式中模式的第n次出现

    CheckfornthoccurrenceofpatterninregularexpressioninJava本问题已经有最佳答案,请猛点这里访问。我想使用Java正则表达式检查输入字符串中特定模式的第n次出现。你能建议怎么做吗?这应该可以工作:MatchResultfindNthOccurance(intn,Patternp,CharSequencesrc){Matcherm=p.matcher…
    2025-04-161
  • 如何让 JTable 停留在已编辑的单元格上

    HowtohaveJTablestayingontheeditedcell如果有人编辑JTable的单元格内容并按Enter,则内容会被修改并且表格选择会移动到下一行。是否可以禁止JTable在单元格编辑后转到下一行?原因是我的程序使用ListSelectionListener在单元格选择上同步了其他一些小部件,并且我不想在编辑当前单元格后选择下一行。Enter的默认绑定是名为selectNext…
    2025-04-161
  • Weblogic 12c 部署

    Weblogic12cdeploy我正在尝试将我的应用程序从Tomcat迁移到Weblogic12.2.1.3.0。我能够毫无错误地部署应用程序,但我遇到了与持久性提供程序相关的运行时错误。这是堆栈跟踪:javax.validation.ValidationException:CalltoTraversableResolver.isReachable()threwanexceptionatorg.…
    2025-04-161
  • Resteasy Content-Type 默认值

    ResteasyContent-Typedefaults我正在使用Resteasy编写一个可以返回JSON和XML的应用程序,但可以选择默认为XML。这是我的方法:@GET@Path("/content")@Produces({MediaType.APPLICATION_XML,MediaType.APPLICATION_JSON})publicStringcontentListRequestXm…
    2025-04-161
  • 代码不会停止运行,在 Java 中

    thecodedoesn'tstoprunning,inJava我正在用Java解决项目Euler中的问题10,即"Thesumoftheprimesbelow10is2+3+5+7=17.Findthesumofalltheprimesbelowtwomillion."我的代码是packageprojecteuler_1;importjava.math.BigInteger;importjava…
    2025-04-161
  • Out of memory java heap space

    Outofmemoryjavaheapspace我正在尝试将大量文件从服务器发送到多个客户端。当我尝试发送大小为700mb的文件时,它显示了"OutOfMemoryjavaheapspace"错误。我正在使用Netbeans7.1.2版本。我还在属性中尝试了VMoption。但仍然发生同样的错误。我认为阅读整个文件存在一些问题。下面的代码最多可用于300mb。请给我一些建议。提前致谢publicc…
    2025-04-161
  • Log4j 记录到共享日志文件

    Log4jLoggingtoaSharedLogFile有没有办法将log4j日志记录事件写入也被其他应用程序写入的日志文件。其他应用程序可以是非Java应用程序。有什么缺点?锁定问题?格式化?Log4j有一个SocketAppender,它将向服务发送事件,您可以自己实现或使用与Log4j捆绑的简单实现。它还支持syslogd和Windows事件日志,这对于尝试将日志输出与来自非Java应用程序…
    2025-04-161